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1 Statement of the problems studied

The overall purpose of this research program was to use optical and in situ sensors to study the
merit and limitations of several hypotheses that, in combination, may serve as the backbone of a
“measurement science of the intermittent atmospheric boundary layer”:

• the geometrical-optics approximation (Tatarskii, 1961, 1971; Rytov et al., 1989) applied to
angle-of-arrival (AOA) fluctuations of light propagating along horizontal paths through the
turbulent atmosphere

• a local and instantaneous interpretation of the traditional Monin-Obukhov theory (Obukhov,
1946; Monin and Obukhov, 1954)

• a local interpretation of Taylor’s frozen-turbulence hypothesis (Tatarskii, 1971)

• the theory of locally isotropic and homogeneous turbulence in velocity and scalar fields (Batch-
elor, 1953; Tatarskii, 1961, 1971)

• a stochastic treatment of fluctuating turbulence “parameters” such as the friction velocity, the
temperature structure parameter, and the kinematic heat flux in the intermittent atmospheric
boundary layer (Kolmogorov, 1962; Obukhov, 1962; Van Atta, 1971; Muschinski et al., 2004).

The motivation behind this choice of hypotheses was to avoid the (sometimes uncessary) mathe-
matical complexities of wave optics (as opposed to geometrical optics) and thereby to make the
theoretical analysis of optical wave propagation through intermittent turbulence more tractable.

2 Summary of the most important results

2.1 A quasi-operational testbed to study turbulence and propagation in the
atmospheric surface layer

We decided that to establish a quasi-operational observational turbulence-and-propagation testbed
at the Boulder Atmospheric Observatory near Erie, CO (which is less than 30 min away from
NWRA’s Boulder office) is the best way (1) to continuously improve the data quality, (2) to
continuously test and refine scientific hypotheses, and (3) to accumulate an extensive database for
statistical analysis and for focused case studies.

• Currently (as of the end of December 2013), the testbed consists of four portable 20-ft towers
(spaced meridionally by 40 m), eight ultrasonic anemometers, two low-response thermometers,
two low-response hygrometers, three quartz-crystal barometers, and two GPS-synchronized
dataloggers, each of which can collect and accurately time-stamp data from up to eight sensors

• Of the five dataloggers that the PI and his students developed (Behn et al., 2008), from
October 2012 through early summer 2013 three have been upgraded with new motherboards,
new solid-state hard disks, new GPS synchronization software, and new GPS receivers, and
they have been thoroughly field-tested since June 2013

• The testbed has been operating with eight sonics and three quartz-crystal barometers almost
without interruption since June 2013
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• The quartz-crystal barometers have been arranged in the form of a triangle of 40 m spacing,
and the barometer array has effectively detected atmospheric infrasound (including ocean-
generated “microbaroms” and the infrasound boom from the 15 February 2013 Russian me-
teor) and gravity waves

• During intensive-observation periods, optical AOAs and intensities have been observed with
large-aperture telescopes pointing at test-light arrays located such that the propagation paths
are horizontal and close to the line of sonic towers

• The test-light arrays have been refurbished and upgraded; now they include also very bright
LEDs, such that daytime measurements become unproblematic (until relatively recently, we
have made optical measurements only after sunset and before sunrise)

• Twice a week, we download the data collected with the continuously-operating component
of the testbed and store them on a Google Drive “in the cloud” for remote and convenient
access by the PI’s research group and by external collaborators.

2.2 Intermittency in the atmospheric surface layer

• In spite of severe intermittency at time scales between tens of seconds and tens of minutes, in
most cases the 1-min estimates of the sensible heat flux observed at 1.45 m and 2.15 m AGL
agree very well with each other, which is consistent with the constant-flux hypothesis (one of
the underlying hypotheses of the Monin-Obukhov theory)

• Time series of 1-min estimates of sensible heat fluxes and 1-min temperature sample means
observed with two vertically spaced sonics can be used for post-facto calibration (Muschinski
and Ayvazian, 2014) of relative biases in a pair of ultrasonic thermometers with an accuracy
(about 10 mK) that is very similar to the accuracy that can be achieved on a calibration
stand that is populated with multiple sonics at the same height

• Sonic measurements at single points and path-averaging (150 m) optical measurements track
each other well down to time scales of 1 min, sometimes down to 10 s (e.g., Tichkule and
Muschinski, 2012).

2.3 Optical remote sensing by means of AOA fluctuations

AOA fluctuations observed with horizontally pointing 36-cm telescopes can be used to retrieve
robust 1-min estimates of path-averages (150 m)

• of the optical refractive-index structure parameter, C2
n

• of beam-transverse wind velocities

• of temporal fluctuations of the vertical temperature gradient.

2.4 Frequency spectra of AOA fluctuations

• In practically all AOA spectra that we have observed, there is a robust f−8/3 power law at
frequencies large compared to the “knee frequency” V/D associated with the aperture-filter
cutoff, where V is the mean beam-transverse wind speed and D is the aperture diameter.
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The −8/3 law was predicted by Tatarskii (1971) for plane waves and by Clifford (1971) for
spherical waves

• The spectral ratio Sα(f)/Sβ(f) [where α is the vertical AOA and β is the horizontal AOA]
appears to independent of f within the −8/3 regime, but the value of that ratio appears to
reflect anisotropy in the velocity field, rather than anisotropy in the temperature field

2.5 AOA artifacts resulting from wind-driven telescope vibrations

As an alternative to our heavy, 36-cm telescopes ($7,000 a piece), we studied the performance of
light-weight, inexpensive, 11-cm telescopes ($200 a piece). In order to understand their vulnerability
to wind-driven vibrations, we exposed them deliberately to the wind (Tichkule and Muschinski,
2013).

• The observed AOA spectra are contaminated by wind-driven vibrations in narrow frequency
bands

• The resonance frequencies are constant; in particular they are independent of the wind speed

• The observed AOA rms value σAOA resulting from a wind-driven telescope resonance appears
to be consistent with the scaling law (Tichkule and Muschinski, 2013)

σAOA ∼ Dρ

Mf2
r

U2, (1)

where fr is the resonance frequency, D is the telescope’s aperture diameter, M is the tele-
scope’s mass, ρ is the air density, and U is the wind speed

• Because the telescope vibrations contaminate the turbulent AOA flucutations only within
narrow frequency bands, there is hope that frequency-domain estimators can be designed
that enable one to obtain meaningful AOA statistics even in the case of severe, wind-driven
telescope vibrations.
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